Tensores naturales sobre variedades y fibraciones
En este trabajo estudiamos los tensores de tipo (0,2). Con este objetivo introduci- mos y desarrollamos el concepto de super espacio. Con la ayuda de estos objetos definimos el concepto de lamda-naturalidad sobre variedades y fibraciones. Esta nueva noción extiende, por fuera del enfoque clásico d...
Збережено в:
| Автор: | |
|---|---|
| Співавтор: | |
| Формат: | Дисертація eКнига |
| Мова: | Іспанська |
| Опубліковано: |
Buenos Aires, Argentina :
Universidad de Buenos Aires,
2009.
|
| Предмети: | |
| Онлайн доступ: | https://elibro.unach.elogim.com/es/lc/unach/titulos/85639 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Резюме: | En este trabajo estudiamos los tensores de tipo (0,2). Con este objetivo introduci- mos y desarrollamos el concepto de super espacio. Con la ayuda de estos objetos definimos el concepto de lamda-naturalidad sobre variedades y fibraciones. Esta nueva noción extiende, por fuera del enfoque clásico de la geometría natural, es decir sin hacer uso de la teoría de los invariantes diferenciales, el concepto de naturalidad de los casos conocidos. También estudiamos la geometría del espacio tangente dotado de una métrica natural y su relación con la geometría de la variedad base. |
|---|