An introduction to mathematical optimal control theory (version 0.2)

Este escrito se enfoca en presentar los fundamentos de la teora̕ de control a travš de un enfoque marcadamente matemt̀ico. Est ̀compuesto por los siguientes capt̕ulos:Introduction. The basic problem; some examples; a geometric solution; overview.Controllability, bang-bang principle. Definitions; qu...

Full description

Saved in:
Bibliographic Details
Other Authors: Evans Lawrence Craig, University of California, Berkeley
Format: Book
Language:English
Subjects:
Online Access:An introduction to mathematical optimal control theory (version 0.2)
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nam a22000004a 4500
001 vpro12042
005 20201223000000.0
008 170927s2017 ck # g## #001 0#eng#d
020
022
040 |a CO-BoINGC 
041 0 |a eng 
245 1 0 |a An introduction to mathematical optimal control theory (version 0.2) 
246 |a Una introduccin̤ a la teora̕ de control matemt̀ico p̤timo (versin̤ 0.2) 
264 |a Bogot ̀(Colombia) :  |b Revista VirtualPRO,  |c 2017 
520 3 |a Este escrito se enfoca en presentar los fundamentos de la teora̕ de control a travš de un enfoque marcadamente matemt̀ico. Est ̀compuesto por los siguientes capt̕ulos:Introduction. The basic problem; some examples; a geometric solution; overview.Controllability, bang-bang principle. Definitions; quick review of linear ODE; controllability of linear equations; observability; bang-bang principle; references.Linear time-optimal control. Existence of time-optimal controls; the Maximum Principle for linear time-optimal control; examples; references.The Pontryagin Maximum Principle. Calculus of variations, Hamiltonian dynamics; review of Lagrange multipliers; statement of Pontryagin Maximum Principle; applications and examples; Maximum Principle with transversality conditions; more applications; Maximum Principle with state constraints; more applications; references.Dynamic programming. Derivation of Bellman<U+0092>s PDE; examples; relationship with Pontryagin Maximum Principle; references.Game theory. Definitions; dynamic programming; games and the Pontryagin Maximum Principle; application: war of attrition and attack; references.Introduction to stochastic control theory. Introduction and motivation; review of probability theory, Brownian motion; stochastic differential equations; stochastic calculus, It ̥chain rule; dynamic programming; application: optimal portfolio selection; references.Appendix: Proofs of the Pontryagin Maximum Principle. An informal derivation; simple control variations; free endpoint problem, no running payoff; free endpoint problem with running payoffs; multiple control variations; fixed endpoint problem; references.Exercises References 
650 \ \ |a Control de procesos industriales 
650 \ \ |a Control automt̀ico 
650 \ \ |a Industrial process control 
650 \ \ |a Automatic control 
650 \ \ |a Teora̕ de control 
650 \ \ |a Controlabilidad 
650 \ \ |a Principio bang-bang 
650 \ \ |a Principio del mx̀imo de Pontryagin 
650 \ \ |a Dinm̀ica hamiltoniana 
650 \ \ |a Multiplicadores de Lagrange 
650 \ \ |a Control theory 
650 \ \ |a Controllability 
650 \ \ |a Bang-bang principle 
650 \ \ |a Pontryagin maximum principle 
650 \ \ |a Hamiltonian dynamics 
650 \ \ |a Lagrange multipliers  
700 \ \ |a Evans Lawrence Craig  
700 \ \ |a University of California, Berkeley 
856 |z An introduction to mathematical optimal control theory (version 0.2)  |u https://virtualpro.unach.elogim.com/biblioteca/una-introduccion-a-la-teoria-de-control-matematico-optimo-version-0-2-