Towards scaling up markov chain monte carlo , an adaptive subsampling approach
Los mťodos Monte Carlo mediante cadenas de Markov se estiman a menudo como demasiado intensivos en třminos computacionales para tener algn͠ uso prc̀tico para grandes conjuntos de datos. En este documento se describe una metodologa̕ que pretende escalar el algoritmo Metropolis-Hastings (MH) en este...
محفوظ في:
| مؤلفون آخرون: | , , , |
|---|---|
| التنسيق: | كتاب |
| اللغة: | الإنجليزية |
| الموضوعات: | |
| الوصول للمادة أونلاين: | Towards scaling up markov chain monte carlo , an adaptive subsampling approach |
| الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
| الملخص: | Los mťodos Monte Carlo mediante cadenas de Markov se estiman a menudo como demasiado intensivos en třminos computacionales para tener algn͠ uso prc̀tico para grandes conjuntos de datos. En este documento se describe una metodologa̕ que pretende escalar el algoritmo Metropolis-Hastings (MH) en este contexto. Se propone una implementacin̤ aproximada del paso aceptar/rechazar del MH que requiera n͠icamente evaluar la probabilidad de un subconjunto aleatorio de los datos, aunque se garantiza que coincida con el paso aceptar/rechazar fundamentado en el conjunto de datos completo con una probabilidad superior al nivel de tolerancia especificado por el usuario. |
|---|---|
| تدمد: | 1938-7228 |