Towards scaling up markov chain monte carlo , an adaptive subsampling approach
Los mťodos Monte Carlo mediante cadenas de Markov se estiman a menudo como demasiado intensivos en třminos computacionales para tener algn͠ uso prc̀tico para grandes conjuntos de datos. En este documento se describe una metodologa̕ que pretende escalar el algoritmo Metropolis-Hastings (MH) en este...
Wedi'i Gadw mewn:
| Awduron Eraill: | , , , |
|---|---|
| Fformat: | Llyfr |
| Iaith: | Saesneg |
| Pynciau: | |
| Mynediad Ar-lein: | Towards scaling up markov chain monte carlo , an adaptive subsampling approach |
| Tagiau: |
Ychwanegu Tag
Dim Tagiau, Byddwch y cyntaf i dagio'r cofnod hwn!
|
| Crynodeb: | Los mťodos Monte Carlo mediante cadenas de Markov se estiman a menudo como demasiado intensivos en třminos computacionales para tener algn͠ uso prc̀tico para grandes conjuntos de datos. En este documento se describe una metodologa̕ que pretende escalar el algoritmo Metropolis-Hastings (MH) en este contexto. Se propone una implementacin̤ aproximada del paso aceptar/rechazar del MH que requiera n͠icamente evaluar la probabilidad de un subconjunto aleatorio de los datos, aunque se garantiza que coincida con el paso aceptar/rechazar fundamentado en el conjunto de datos completo con una probabilidad superior al nivel de tolerancia especificado por el usuario. |
|---|---|
| ISSN: | 1938-7228 |