Towards scaling up markov chain monte carlo , an adaptive subsampling approach
Los mťodos Monte Carlo mediante cadenas de Markov se estiman a menudo como demasiado intensivos en třminos computacionales para tener algn͠ uso prc̀tico para grandes conjuntos de datos. En este documento se describe una metodologa̕ que pretende escalar el algoritmo Metropolis-Hastings (MH) en este...
Enregistré dans:
| Autres auteurs: | , , , |
|---|---|
| Format: | Livre |
| Langue: | anglais |
| Sujets: | |
| Accès en ligne: | Towards scaling up markov chain monte carlo , an adaptive subsampling approach |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
| Résumé: | Los mťodos Monte Carlo mediante cadenas de Markov se estiman a menudo como demasiado intensivos en třminos computacionales para tener algn͠ uso prc̀tico para grandes conjuntos de datos. En este documento se describe una metodologa̕ que pretende escalar el algoritmo Metropolis-Hastings (MH) en este contexto. Se propone una implementacin̤ aproximada del paso aceptar/rechazar del MH que requiera n͠icamente evaluar la probabilidad de un subconjunto aleatorio de los datos, aunque se garantiza que coincida con el paso aceptar/rechazar fundamentado en el conjunto de datos completo con una probabilidad superior al nivel de tolerancia especificado por el usuario. |
|---|---|
| ISSN: | 1938-7228 |