Conservative discontinuous finite volume and mixed schemes for a new four-field formulation in poroelasticity

We introduce a numerical method for the approximation of linear poroelasticity equations, representing the interaction between the non-viscous filtration flow of a fluid and the linear mechanical response of a porous medium. In the proposed formulation, the primary variables in the system are the so...

Ամբողջական նկարագրություն

Պահպանված է:
Մատենագիտական մանրամասներ
Այլ հեղինակներ: Kumar, Sarvesh (coautor), Oyarzúa, Ricardo (coautor), Ruiz Baier, Ricardo (coautor), Sandilya, Ruchi (coautor)
Ձևաչափ: էլ․ գիրք
Լեզու:անգլերեն
Խորագրեր:
Առցանց հասանելիություն:https://repositoriobiblio.unach.cl/handle/123456789/1442
Ցուցիչներ: Ավելացրեք ցուցիչ
Չկան պիտակներ, Եղեք առաջինը, ով նշում է այս գրառումը!

MARC

LEADER 00000nam a22000005a 4500
001 144-2019
003 CL-ChUAC
005 20250116140812.0
006 m o d |
007 cr cn|||||||||
008 210615s2019 fr |||||s|||| 000 ||eng d
022 |a 0764-583X 
022 |a 1290-3841 
040 |a CL-ChUAC  |b spa  |c CL-ChUAC 
041 |a eng  |b eng  |f eng 
245 1 0 |a Conservative discontinuous finite volume and mixed schemes for a new four-field formulation in poroelasticity  |c Sarvesh Kumar ; Ricardo Oyarzua ; Ricardo Ruiz-Baier ; Ruchi Sandilya 
336 |2 rdacontent   |a text  |b txt 
337 |2 rdamedia  |a unmediated  |b n 
338 |2 rdacarrier   |a volume  |b nc 
504 |a incluye referencia bibliográfica (páginas 25-27) 
520 3 |a We introduce a numerical method for the approximation of linear poroelasticity equations, representing the interaction between the non-viscous filtration flow of a fluid and the linear mechanical response of a porous medium. In the proposed formulation, the primary variables in the system are the solid displacement, the fluid pressure, the fluid flux, and the total pressure. A discontinuous finite volume method is designed for the approximation of solid displacement using a dual mesh, whereas a mixed approach is employed to approximate fluid flux and the two pressures. We focus on the stationary case and the resulting discrete problem exhibits a double saddle-point structure. Its solvability and stability are established in terms of bounds (and of norms) that do not depend on the modulus of dilation of the solid. We derive optimal error estimates in suitable norms, for all field variables; and we exemplify the convergence and locking-free properties of this scheme through a series of numerical tests. 
650 4 |a Biot problem 
650 4 |a Discontinuous finite volume methods 
650 4 |a Mixed finite elements 
650 4 |a Locking-free approximations 
650 4 |a Conservative schemes 
650 4 |a Error estimates 
700 1 |a Kumar, Sarvesh  |e coautor 
700 1 |a Oyarzúa, Ricardo  |e coautor 
700 1 |a Ruiz Baier, Ricardo  |e coautor 
700 1 |a Sandilya, Ruchi  |e coautor 
773 0 |d Les Ulis, Francia  |g August 2019  |t ESAIM Mathematical Modelling and Numerical Analysis [artículo de revista] 
856 4 1 |u https://repositoriobiblio.unach.cl/handle/123456789/1442  
942 |2 ddc  |c AREV 
999 |c 2366469  |d 2366469